Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A statistical framework for detecting therapy-induced resistance from drug screens (2409.18879v3)

Published 27 Sep 2024 in q-bio.PE and q-bio.QM

Abstract: Resistance to therapy remains a significant challenge in cancer treatment, often due to the presence of a stem-like cell population that drives tumor recurrence post-treatment. Moreover, many anticancer therapies induce plasticity, converting initially drug-sensitive cells to a more resistant state, e.g. through epigenetic processes and de-differentiation programs. Understanding the balance between therapeutic anti-tumor effects and induced resistance is critical for identifying treatment strategies. In this study, we introduce a robust statistical framework, based on multi-type branching process models of the evolutionary dynamics of tumor cell populations, to detect and quantify therapy-induced resistance phenomena from high throughput drug screening data. Through comprehensive in silico experiments, we show the efficacy of our framework in estimating parameters governing population dynamics and drug responses in a heterogeneous tumor population where cell state transitions are influenced by the drug. Finally, using recent in vitro data from multiple sources, we demonstrate that our framework is effective for analyzing real-world data and generating meaningful predictions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: