Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Extracting Dynamical Maps of Non-Markovian Open Quantum Systems (2409.17051v2)

Published 25 Sep 2024 in quant-ph

Abstract: The most general description of quantum evolution up to a time $\tau$ is a completely positive tracing preserving map known as a dynamical map $\hat{\Lambda}(\tau)$. Here we consider $\hat{\Lambda}(\tau)$ arising from suddenly coupling a system to one or more thermal baths with a strength that is neither weak nor strong. Given no clear separation of characteristic system/bath time scales $\hat{\Lambda}(\tau)$ is generically expected to be non-Markovian, however we do assume the ensuing dynamics has a unique steady state implying the baths possess a finite memory time $\tau_{\rm m}$. By combining several techniques within a tensor network framework we directly and accurately extract $\hat{\Lambda}(\tau)$ for a small number of interacting fermionic modes coupled to infinite non-interacting Fermi baths. We employ the Choi-Jamiolkowski isomorphism so that $\hat{\Lambda}(\tau)$ can be fully reconstructed from a single pure state calculation of the unitary dynamics of the system, bath and their replica auxillary modes up to time $\tau$. From $\hat{\Lambda}(\tau)$ we also compute the time local propagator $\hat{\mathcal{L}}(\tau)$. By examining the convergence with $\tau$ of the instantaneous fixed points of these objects we establish their respective memory times $\tau{\Lambda}_{\rm m}$ and $\tau{\mathcal{L}}_{\rm m}$. Beyond these times, the propagator $\hat{\mathcal{L}}(\tau)$ and dynamical map $\hat{\Lambda}(\tau)$ accurately describe all the subsequent long-time relaxation dynamics up to stationarity. Our numerical examples of interacting spinless Fermi chains and the single impurity Anderson model demonstrate regimes where our approach can offer a significant speedup in determining the stationary state compared to directly simulating the long-time limit.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.