Open Quantum System Dynamics from Infinite Tensor Network Contraction (2307.01802v4)
Abstract: Approaching the long-time dynamics of non-Markovian open quantum systems presents a challenging task if the bath is strongly coupled. Recent proposals address this problem through a representation of the so-called process tensor in terms of a tensor network. We show that for Gaussian environments highly efficient contraction to matrix product operator (MPO) form can be achieved with infinite MPO evolution methods, leading to significant computational speed-up over existing proposals. The result structurally resembles open system evolution with carefully designed auxiliary degrees of freedom, as in hierarchical or pseudomode methods. Here, however, these degrees of freedom are generated automatically by the MPO evolution algorithm. Moreover, the semi-group form of the resulting propagator enables us to explore steady-state physics, such as phase transitions.
- I. de Vega and D. Alonso, Dynamics of non-Markovian open quantum systems, Rev. Mod. Phys. 89, 015001 (2017).
- D. Segal and B. K. Agarwalla, Vibrational Heat Transport in Molecular Junctions, Annu. Rev. Phys. Chem. 67, 185 (2016).
- Y. Tanimura, Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM), J. Chem. Phys. 153, 020901 (2020).
- H. Wang and M. Thoss, From coherent motion to localization: dynamics of the spin-boson model at zero temperature, New J. Phys. 10, 115005 (2008).
- R. Hartmann and W. T. Strunz, Exact open quantum system dynamics using the hierarchy of pure states (hops), Journal of Chemical Theory and Computation 13, 5834 (2017).
- M. Werther and F. Großmann, Apoptosis of moving nonorthogonal basis functions in many-particle quantum dynamics, Phys. Rev. B 101, 174315 (2020).
- S. Kundu and N. Makri, PathSum: A C++ and Fortran suite of fully quantum mechanical real-time path integral methods for (multi-)system + bath dynamics, J. Chem. Phys. 158, 224801 (2023).
- D. Suess, A. Eisfeld, and W. T. Strunz, Hierarchy of Stochastic Pure States for Open Quantum System Dynamics, Phys. Rev. Lett. 113, 150403 (2014).
- S. Flannigan, F. Damanet, and A. J. Daley, Many-Body Quantum State Diffusion for Non-Markovian Dynamics in Strongly Interacting Systems, Phys. Rev. Lett. 128, 063601 (2022).
- A. Imamoglu, Stochastic wave-function approach to non-Markovian systems, Phys. Rev. A 50, 3650 (1994).
- B. M. Garraway, Nonperturbative decay of an atomic system in a cavity, Phys. Rev. A 55, 2290 (1997).
- K. H. Hughes, C. D. Christ, and I. Burghardt, Effective-mode representation of non-Markovian dynamics: A hierarchical approximation of the spectral density. I. Application to single surface dynamics, J. Chem. Phys. 131, 024109 (2009).
- R. P. Feynman and F. L. Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24, 118 (1963a).
- D. E. Makarov and N. Makri, Path integrals for dissipative systems by tensor multiplication. Condensed phase quantum dynamics for arbitrarily long time, Chem. Phys. Lett. 221, 482 (1994).
- M. R. Jørgensen and F. A. Pollock, Exploiting the Causal Tensor Network Structure of Quantum Processes to Efficiently Simulate Non-Markovian Path Integrals, Phys. Rev. Lett. 123, 240602 (2019).
- F. Otterpohl, P. Nalbach, and M. Thorwart, Hidden Phase of the Spin-Boson Model, Phys. Rev. Lett. 129, 120406 (2022).
- P. Fowler-Wright, B. W. Lovett, and J. Keeling, Efficient Many-Body Non-Markovian Dynamics of Organic Polaritons, Phys. Rev. Lett. 129, 173001 (2022).
- F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Matrix Product Density Operators: Simulation of Finite-Temperature and Dissipative Systems, Phys. Rev. Lett. 93, 207204 (2004).
- M. Zwolak and G. Vidal, Mixed-State Dynamics in One-Dimensional Quantum Lattice Systems: A Time-Dependent Superoperator Renormalization Algorithm, Phys. Rev. Lett. 93, 207205 (2004).
- G. Vidal, Classical Simulation of Infinite-Size Quantum Lattice Systems in One Spatial Dimension, Phys. Rev. Lett. 98, 070201 (2007).
- We assume without loss of generality that trρenv(0)B(t)=0trsubscript𝜌env0𝐵𝑡0\mathrm{tr}\rho_{\mathrm{env}}(0)B(t)=0roman_tr italic_ρ start_POSTSUBSCRIPT roman_env end_POSTSUBSCRIPT ( 0 ) italic_B ( italic_t ) = 0.
- V. Link, W. T. Strunz, and K. Luoma, Non-Markovian Quantum Dynamics in a Squeezed Reservoir, Entropy 24, 352 (2022).
- N. Hatano and M. Suzuki, Finding Exponential Product Formulas of Higher Orders, in Quantum Annealing and Other Optimization Methods (Springer, Berlin, Germany, 2005) pp. 37–68.
- R. P. Feynman and F. L. Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24, 118 (1963b).
- N. Makri and D. E. Makarov, Tensor propagator for iterative quantum time evolution of reduced density matrices. I. Theory, J. Chem. Phys. 102, 4600 (1995a).
- N. Makri and D. E. Makarov, Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology, J. Chem. Phys. 102, 4611 (1995b).
- The supplementary material is appended to this document.
- The TEMPO collaboration, OQuPy (2023).
- R. Orús and G. Vidal, Infinite time-evolving block decimation algorithm beyond unitary evolution, Phys. Rev. B 78, 155117 (2008).
- An open source implementation of the iTEBD based method is available at github.com/val-link/iTEBD-TEMPO.
- R. Hartmann and W. T. Strunz, Environmentally Induced Entanglement – Anomalous Behavior in the Adiabatic Regime, Quantum 4, 347 (2020a), 2006.04412v2 .
- B. Debecker, J. Martin, and F. Damanet, Spectral Theory of Non-Markovian Dissipative Phase Transitions, arXiv 10.48550/arXiv.2307.01119 (2023), 2307.01119 .
- R. Hartmann and W. T. Strunz, Accuracy assessment of perturbative master equations: Embracing nonpositivity, Phys. Rev. A 101, 012103 (2020b).
- C. H. Fleming and N. I. Cummings, Accuracy of perturbative master equations, Phys. Rev. E 83, 031117 (2011).
- R. Palacino and J. Keeling, Atom-only theories for U(1) symmetric cavity-QED models, Phys. Rev. Res. 3, L032016 (2021).
- R. Bulla, N.-H. Tong, and M. Vojta, Numerical Renormalization Group for Bosonic Systems and Application to the Sub-Ohmic Spin-Boson Model, Phys. Rev. Lett. 91, 170601 (2003).
- M. Vojta, N.-H. Tong, and R. Bulla, Quantum Phase Transitions in the Sub-Ohmic Spin-Boson Model: Failure of the Quantum-Classical Mapping, Phys. Rev. Lett. 94, 070604 (2005).
- F. B. Anders, R. Bulla, and M. Vojta, Equilibrium and Nonequilibrium Dynamics of the Sub-Ohmic Spin-Boson Model, Phys. Rev. Lett. 98, 210402 (2007).
- H. Wang and M. Thoss, From coherent motion to localization: II. Dynamics of the spin-boson model with sub-Ohmic spectral density at zero temperature, Chem. Phys. 370, 78 (2010).
- P. Nalbach and M. Thorwart, Ultraslow quantum dynamics in a sub-Ohmic heat bath, Phys. Rev. B 81, 054308 (2010).
- P. Nalbach and M. Thorwart, Crossover from coherent to incoherent quantum dynamics due to sub-Ohmic dephasing, Phys. Rev. B 87, 014116 (2013).
- H. Wang and J. Shao, Quantum Phase Transition in the Spin-Boson Model: A Multilayer Multiconfiguration Time-Dependent Hartree Study, J. Phys. Chem. A 123, 1882 (2019).
- L. Vanderstraeten, J. Haegeman, and F. Verstraete, Tangent-space methods for uniform matrix product states, SciPost Phys. Lect. Notes , 7 (2019).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.