Enhancing Temporal Sensitivity and Reasoning for Time-Sensitive Question Answering
Abstract: Time-Sensitive Question Answering (TSQA) demands the effective utilization of specific temporal contexts, encompassing multiple time-evolving facts, to address time-sensitive questions. This necessitates not only the parsing of temporal information within questions but also the identification and understanding of time-evolving facts to generate accurate answers. However, current LLMs still have limited sensitivity to temporal information and their inadequate temporal reasoning capabilities. In this paper, we propose a novel framework that enhances temporal awareness and reasoning through Temporal Information-Aware Embedding and Granular Contrastive Reinforcement Learning. Experimental results on four TSQA datasets demonstrate that our framework significantly outperforms existing LLMs in TSQA tasks, marking a step forward in bridging the performance gap between machine and human temporal understanding and reasoning.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.