Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Context Matters: An Empirical Study of the Impact of Contextual Information in Temporal Question Answering Systems (2406.19538v1)

Published 27 Jun 2024 in cs.CL

Abstract: LLMs often struggle with temporal reasoning, crucial for tasks like historical event analysis and time-sensitive information retrieval. Despite advancements, state-of-the-art models falter in handling temporal information, especially when faced with irrelevant or noisy contexts. This paper addresses this gap by empirically examining the robustness of temporal question-answering (TQA) systems trained on various context types, including relevant, irrelevant, slightly altered, and no context. Our findings indicate that training with a mix of these contexts enhances model robustness and accuracy. Additionally, we show that the position of context relative to the question significantly impacts performance, with question-first positioning yielding better results. We introduce two new context-rich TQA datasets, ContextAQA and ContextTQE, and provide comprehensive evaluations and guidelines for training robust TQA models. Our work lays the foundation for developing reliable and context-aware temporal QA systems, with broader implications for enhancing LLM robustness against diverse and potentially adversarial information.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com