Simultaneously reconstructing potentials and internal sources for fractional Schrödinger equations (2409.16716v1)
Abstract: The inverse problems about fractional Calder\'on problem and fractional Schr\"odinger equations are of interest in the study of mathematics. In this paper, we propose the inverse problem to simultaneously reconstruct potentials and sources for fractional Schr\"odinger equations with internal source terms. We show the uniqueness for reconstructing the two terms under measurements from two different nonhomogeneous boundary conditions. By introducing the variational Tikhonov regularization functional, numerical method based on conjugate gradient method(CGM) is provided to realize this inverse problem. Numerical experiments are given to gauge the performance of the numerical method.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.