Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Towards Robust Object Detection: Identifying and Removing Backdoors via Module Inconsistency Analysis (2409.16057v2)

Published 24 Sep 2024 in cs.CV and cs.AI

Abstract: Object detection models, widely used in security-critical applications, are vulnerable to backdoor attacks that cause targeted misclassifications when triggered by specific patterns. Existing backdoor defense techniques, primarily designed for simpler models like image classifiers, often fail to effectively detect and remove backdoors in object detectors. We propose a backdoor defense framework tailored to object detection models, based on the observation that backdoor attacks cause significant inconsistencies between local modules' behaviors, such as the Region Proposal Network (RPN) and classification head. By quantifying and analyzing these inconsistencies, we develop an algorithm to detect backdoors. We find that the inconsistent module is usually the main source of backdoor behavior, leading to a removal method that localizes the affected module, resets its parameters, and fine-tunes the model on a small clean dataset. Extensive experiments with state-of-the-art two-stage object detectors show our method achieves a 90% improvement in backdoor removal rate over fine-tuning baselines, while limiting clean data accuracy loss to less than 4%. To the best of our knowledge, this work presents the first approach that addresses both the detection and removal of backdoors in two-stage object detection models, advancing the field of securing these complex systems against backdoor attacks.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.