Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Video-to-Audio Generation with Fine-grained Temporal Semantics (2409.14709v1)

Published 23 Sep 2024 in eess.AS and cs.SD

Abstract: With recent advances of AIGC, video generation have gained a surge of research interest in both academia and industry (e.g., Sora). However, it remains a challenge to produce temporally aligned audio to synchronize the generated video, considering the complicated semantic information included in the latter. In this work, inspired by the recent success of text-to-audio (TTA) generation, we first investigate the video-to-audio (VTA) generation framework based on latent diffusion model (LDM). Similar to latest pioneering exploration in VTA, our preliminary results also show great potentials of LDM in VTA task, but it still suffers from sub-optimal temporal alignment. To this end, we propose to enhance the temporal alignment of VTA with frame-level semantic information. With the recently popular grounding segment anything model (Grounding SAM), we can extract the fine-grained semantics in video frames to enable VTA to produce better-aligned audio signal. Extensive experiments demonstrate the effectiveness of our system on both objective and subjective evaluation metrics, which shows both better audio quality and fine-grained temporal alignment.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.