Papers
Topics
Authors
Recent
2000 character limit reached

Performance Enhancement of the Ozaki Scheme on Integer Matrix Multiplication Unit (2409.13313v1)

Published 20 Sep 2024 in cs.DC

Abstract: This study was aimed at simultaneously achieving sufficient accuracy and high performance for general matrix multiplications. Recent architectures, such as NVIDIA GPUs, feature high-performance units designed for low-precision matrix multiplications in machine learning models, and next-generation architectures are expected to follow the same design principle. The key to achieving superior performance is to fully leverage such architectures. The Ozaki scheme, a highly accurate matrix multiplication algorithm using error-free transformations, enables higher-precision matrix multiplication to be performed through multiple lower-precision matrix multiplications and higher-precision matrix additions. Ootomo et al. implemented the Ozaki scheme on high-performance matrix multiplication units with the aim of achieving both sufficient accuracy and high performance. This paper proposes alternative approaches to improving performance by reducing the numbers of lower-precision matrix multiplications and higher-precision matrix additions. Numerical experiments demonstrate the accuracy of the results and conduct performance benchmarks of the proposed approaches. These approaches are expected to yield more efficient results in next-generation architectures.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.