Acceleration of complex matrix multiplication using arbitrary precision floating-point arithmetic (2307.06072v1)
Abstract: Efficient multiple precision linear numerical computation libraries such as MPLAPACK are critical in dealing with ill-conditioned problems. Specifically, there are optimization methods for matrix multiplication, such as the Strassen algorithm and the Ozaki scheme, which can be used to speed up computation. For complex matrix multiplication, the 3M method can also be used, which requires only three multiplications of real matrices, instead of the 4M method, which requires four multiplications of real matrices. In this study, we extend these optimization methods to arbitrary precision complex matrix multiplication and verify the possible increase in computation speed through benchmark tests. The optimization methods are also applied to complex LU decomposition using matrix multiplication to demonstrate that the Ozaki scheme can be used to achieve higher computation speeds.
- MPLAPACK/MPBLAS, “Multiple precision arithmetic LAPACK and BLAS,” https://github.com/nakatamaho/mplapack.
- D. Bailey, “QD,” https://www.davidhbailey.com/dhbsoftware/.
- T. Granlaud and G. development team, “The GNU Multiple Precision arithmetic library,” https://gmplib.org/.
- M. Project, “The MPFR library,” https://www.mpfr.org/.
- A. Enge, P. Théveny, and P. Zimmermann, “MPC,” http://www.multiprecision.org/mpc/.
- A. A. T. L. A. Software, “http://math-atlas.sourceforge.net/.”
- OpenBLAS, “http://www.openblas.net/.”
- I. M. K. Library, “http://www.intel.com/software/products/mkl/.”
- V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathematik, vol. 13, no. 4, pp. 354–356, 1969. [Online]. Available: http://dx.doi.org/10.1007/BF02165411
- K. Ozaki, T. Ogita, S. Oishi, and S. M. Rump, “Error-free transformations of matrix multiplication by using fast routines of matrix multiplication and its applications,” Numerical Algorithms, vol. 59, no. 1, pp. 95–118, Jan 2012. [Online]. Available: https://doi.org/10.1007/s11075-011-9478-1
- D. Mukunoki, K. Ozaki, T. Ogita, and T. Imamura, “Accurate matrix multiplication on binary128 format accelerated by ozaki scheme,” in 50th International Conference on Parallel Processing, ser. ICPP 2021. New York, NY, USA: Association for Computing Machinery, 2021. [Online]. Available: https://doi.org/10.1145/3472456.3472493
- F. G. Van Zee and T. M. Smith, “Implementing high-performance complex matrix multiplication via the 3m and 4m methods,” ACM Trans. Math. Softw., vol. 44, no. 1, jul 2017. [Online]. Available: https://doi.org/10.1145/3086466
- N. Y. Kazal, I. Mukhlash, B. A. Sanjoyo, N. Hidayat, and K. Ozaki, “Extended use of error-free transformation for real matrix multiplication to complex matrix multiplication,” Journal of Physics: Conference Series, vol. 1821, no. 1, p. 012022, mar 2021. [Online]. Available: https://dx.doi.org/10.1088/1742-6596/1821/1/012022
- T. Kouya and T. Utsugiri, “Optimization of multiple-precision lu decomposition using ozaki scheme,” in Computational Science and Its Applications – ICCSA 2023 Workshops, O. Gervasi, B. Murgante, A. M. A. C. Rocha, C. Garau, F. Scorza, Y. Karaca, and C. M. Torre, Eds. Cham: Springer Nature Switzerland, 2023, pp. 529–545.