Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Acceleration of complex matrix multiplication using arbitrary precision floating-point arithmetic (2307.06072v1)

Published 12 Jul 2023 in math.NA and cs.NA

Abstract: Efficient multiple precision linear numerical computation libraries such as MPLAPACK are critical in dealing with ill-conditioned problems. Specifically, there are optimization methods for matrix multiplication, such as the Strassen algorithm and the Ozaki scheme, which can be used to speed up computation. For complex matrix multiplication, the 3M method can also be used, which requires only three multiplications of real matrices, instead of the 4M method, which requires four multiplications of real matrices. In this study, we extend these optimization methods to arbitrary precision complex matrix multiplication and verify the possible increase in computation speed through benchmark tests. The optimization methods are also applied to complex LU decomposition using matrix multiplication to demonstrate that the Ozaki scheme can be used to achieve higher computation speeds.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. MPLAPACK/MPBLAS, “Multiple precision arithmetic LAPACK and BLAS,” https://github.com/nakatamaho/mplapack.
  2. D. Bailey, “QD,” https://www.davidhbailey.com/dhbsoftware/.
  3. T. Granlaud and G. development team, “The GNU Multiple Precision arithmetic library,” https://gmplib.org/.
  4. M. Project, “The MPFR library,” https://www.mpfr.org/.
  5. A. Enge, P. Théveny, and P. Zimmermann, “MPC,” http://www.multiprecision.org/mpc/.
  6. A. A. T. L. A. Software, “http://math-atlas.sourceforge.net/.”
  7. OpenBLAS, “http://www.openblas.net/.”
  8. I. M. K. Library, “http://www.intel.com/software/products/mkl/.”
  9. V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathematik, vol. 13, no. 4, pp. 354–356, 1969. [Online]. Available: http://dx.doi.org/10.1007/BF02165411
  10. K. Ozaki, T. Ogita, S. Oishi, and S. M. Rump, “Error-free transformations of matrix multiplication by using fast routines of matrix multiplication and its applications,” Numerical Algorithms, vol. 59, no. 1, pp. 95–118, Jan 2012. [Online]. Available: https://doi.org/10.1007/s11075-011-9478-1
  11. D. Mukunoki, K. Ozaki, T. Ogita, and T. Imamura, “Accurate matrix multiplication on binary128 format accelerated by ozaki scheme,” in 50th International Conference on Parallel Processing, ser. ICPP 2021.   New York, NY, USA: Association for Computing Machinery, 2021. [Online]. Available: https://doi.org/10.1145/3472456.3472493
  12. F. G. Van Zee and T. M. Smith, “Implementing high-performance complex matrix multiplication via the 3m and 4m methods,” ACM Trans. Math. Softw., vol. 44, no. 1, jul 2017. [Online]. Available: https://doi.org/10.1145/3086466
  13. N. Y. Kazal, I. Mukhlash, B. A. Sanjoyo, N. Hidayat, and K. Ozaki, “Extended use of error-free transformation for real matrix multiplication to complex matrix multiplication,” Journal of Physics: Conference Series, vol. 1821, no. 1, p. 012022, mar 2021. [Online]. Available: https://dx.doi.org/10.1088/1742-6596/1821/1/012022
  14. T. Kouya and T. Utsugiri, “Optimization of multiple-precision lu decomposition using ozaki scheme,” in Computational Science and Its Applications – ICCSA 2023 Workshops, O. Gervasi, B. Murgante, A. M. A. C. Rocha, C. Garau, F. Scorza, Y. Karaca, and C. M. Torre, Eds.   Cham: Springer Nature Switzerland, 2023, pp. 529–545.
Citations (1)

Summary

We haven't generated a summary for this paper yet.