Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetry-Enriched Learning: A Category-Theoretic Framework for Robust Machine Learning Models (2409.12100v1)

Published 18 Sep 2024 in cs.LG

Abstract: This manuscript presents a novel framework that integrates higher-order symmetries and category theory into machine learning. We introduce new mathematical constructs, including hyper-symmetry categories and functorial representations, to model complex transformations within learning algorithms. Our contributions include the design of symmetry-enriched learning models, the development of advanced optimization techniques leveraging categorical symmetries, and the theoretical analysis of their implications for model robustness, generalization, and convergence. Through rigorous proofs and practical applications, we demonstrate that incorporating higher-dimensional categorical structures enhances both the theoretical foundations and practical capabilities of modern machine learning algorithms, opening new directions for research and innovation.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets