Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mesoscopic Universality for Circular Orthogonal Polynomial Ensembles

Published 15 Sep 2024 in math-ph, math.MP, and math.PR | (2409.09803v1)

Abstract: We study mesoscopic fluctuations of orthogonal polynomial ensembles on the unit circle. We show that asymptotics of such fluctuations are stable under decaying perturbations of the recurrence coefficients, where the appropriate decay rate depends on the scale considered. By directly proving Gaussian limits for certain constant coefficient ensembles, we obtain mesoscopic scale Gaussian limits for a large class of orthogonal polynomial ensembles on the unit circle. As a corollary we prove mesocopic central limit theorems (for all mesoscopic scales) for the $\beta=2$ circular Jacobi ensembles with real parameter $\delta>-1/2$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.