Universality of mesoscopic fluctuations for orthogonal polynomial ensembles (1411.5205v1)
Abstract: We prove that the fluctuations of mesocopic linear statistics for orthogonal polynomial ensembles are universal in the sense that two measures with asymptotic recurrence coefficients have the same asymptotic mesoscopic fluctuations (under an additional assumption on the local regularity of one of the measures). The convergence rate of the recurrence coefficients determines the range of scales on which the limiting fluctuations are identical. Our main tool is an analysis of the Green's function for the associated Jacobi matrices. As a particular consequence we obtain a Central Limit Theorem for the modified Jacobi Unitary Ensembles on all mesosopic scales.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.