Papers
Topics
Authors
Recent
2000 character limit reached

Automated Lesion Segmentation in Whole-Body PET/CT in a multitracer setting

Published 15 Sep 2024 in cs.CV and cs.AI | (2409.09766v1)

Abstract: This study explores a workflow for automated segmentation of lesions in FDG and PSMA PET/CT images. Due to the substantial differences in image characteristics between FDG and PSMA, specialized preprocessing steps are required. Utilizing YOLOv8 for data classification, the FDG and PSMA images are preprocessed separately before feeding them into the segmentation models, aiming to improve lesion segmentation accuracy. The study focuses on evaluating the performance of automated segmentation workflow for multitracer PET images. The findings are expected to provide critical insights for enhancing diagnostic workflows and patient-specific treatment plans. Our code will be open-sourced and available at https://github.com/jiayiliu-pku/AP2024.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

GitHub