Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A local-global principle for parametrized $\infty$-categories (2409.05568v2)

Published 9 Sep 2024 in math.AT and math.CT

Abstract: We prove a local-global principle for $\infty$-categories over any base $\infty$-category $\mathcal{C}$: we show that any $\infty$-category $\mathcal{B} \to \mathcal{C}$ over $\mathcal{C}$ is determined by the following data: the collection of fibers $\mathcal{B}_X$ for $X$ running through the set of equivalence classes of objects of $\mathcal{C}$ endowed with the action of the space of automorphisms $\mathrm{Aut}_X(\mathcal{B})$ on the fiber, the local data, together with a locally cartesian fibration $\mathcal{D} \to \mathcal{C}$ and $\mathrm{Aut}_X(\mathcal{B})$-linear equivalences $\mathcal{D}_X \simeq \mathcal{P}(\mathcal{B}_X)$ to the $\infty$-category of presheaves on $\mathcal{B}_X$, the gluing data. As applications we describe the $\infty$-category of small $\infty$-categories over $[1]$ in terms of the $\infty$-category of left fibrations and prove an end formula for mapping spaces of the internal hom of the $\infty$-category of small $\infty$-categories over $[1]$ and the conditionally existing internal hom of the $\infty$-category of small $\infty$-categories over any small $\infty$-category $\mathcal{C}.$ Considering functoriality in $\mathcal{C}$ we obtain as a corollary that the double $\infty$-category $\mathrm{CORR}$ of correspondences is the pullback of the double $\infty$-category $\mathrm{PR}L$ of presentable $\infty$-categories along the functor $\infty\mathrm{Cat} \to \mathrm{Pr}L$ taking presheaves. We deduce that $\infty$-categories over any $\infty$-category $\mathcal{C}$ are classified by normal lax 2-functors.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube