2000 character limit reached
Locally rigid $\infty$-categories (2410.21524v1)
Published 28 Oct 2024 in math.CT, math.AT, and math.KT
Abstract: We survey the theory of locally rigid and rigid symmetric monoidal $\infty$-categories over an arbitrary base $\mathcal{V}\in\mathrm{CAlg}(\mathbf{Pr}\mathrm{L})$. Along the way, we introduce and study ``$\mathcal{V}$-atomic morphisms'', which are analogues of compact morphisms over an arbitrary base $\mathcal{V}$.
- The stack of local systems with restricted variation and geometric Langlands theory with nilpotent singular support. arXiv preprint arXiv:2010.01906, 2020.
- Eđ¸Eitalic_E-theory is compactly assembled. arXiv preprint arXiv:2402.18228, 2024.
- Shay Ben Moshe. Naturality of the â\inftyâ-Categorical Enriched Yoneda Embedding. arXiv preprint arXiv:2301.00601, 2023.
- Lax colimits and free fibrations in â\inftyâ-categories. arXiv preprint arXiv:1501.02161, 2015.
- A study in derived algebraic geometry: Volume I: correspondences and duality, volume 221. American Mathematical Society, 2019.
- Hadrian Heine. An equivalence between enriched â\inftyâ-categories and â\inftyâ-categories with weak action. arXiv preprint arXiv:2009.02428, 2020.
- Hadrian Heine. A monadicity theorem for higher algebraic structures. arXiv preprint arXiv:1712.00555v4, 2023.
- Higher traces, noncommutative motives, and the categorified Chern character. Advances in Mathematics, 309:97â154, 2017.
- The categorified GrothendieckâRiemannâRoch theorem. Compositio Mathematica, 157(1):154â214, 2021.
- Sheaves on manifolds. Available at authorâs webpage.
- Jacob Lurie. Higher topos theory. Princeton University Press, 2009.
- Jacob Lurie. Higher algebra, 2012.
- Maxime Ramzi. Dualizable presentable â\inftyâ-categories. In preparation, 2024.
- Marco Volpe. Six functor formalism for sheaves with non-presentable coefficients. arXiv preprint arXiv:2110.10212, 2021.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.