Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proto-OOD: Enhancing OOD Object Detection with Prototype Feature Similarity (2409.05466v2)

Published 9 Sep 2024 in cs.CV and cs.AI

Abstract: Neural networks that are trained on limited category samples often mispredict out-of-distribution (OOD) objects. We observe that features of the same category are more tightly clustered in feature space, while those of different categories are more dispersed. Based on this, we propose using prototype similarity for OOD detection. Drawing on widely used prototype features in few-shot learning, we introduce a novel OOD detection network structure (Proto-OOD). Proto-OOD enhances the representativeness of category prototypes using contrastive loss and detects OOD data by evaluating the similarity between input features and category prototypes. During training, Proto-OOD generates OOD samples for training the similarity module with a negative embedding generator. When Pascal VOC are used as the in-distribution dataset and MS-COCO as the OOD dataset, Proto-OOD significantly reduces the FPR (false positive rate). Moreover, considering the limitations of existing evaluation metrics, we propose a more reasonable evaluation protocol. The code will be released.

Summary

We haven't generated a summary for this paper yet.