Transformer with Leveraged Masked Autoencoder for video-based Pain Assessment (2409.05088v3)
Abstract: Accurate pain assessment is crucial in healthcare for effective diagnosis and treatment; however, traditional methods relying on self-reporting are inadequate for populations unable to communicate their pain. Cutting-edge AI is promising for supporting clinicians in pain recognition using facial video data. In this paper, we enhance pain recognition by employing facial video analysis within a Transformer-based deep learning model. By combining a powerful Masked Autoencoder with a Transformers-based classifier, our model effectively captures pain level indicators through both expressions and micro-expressions. We conducted our experiment on the AI4Pain dataset, which produced promising results that pave the way for innovative healthcare solutions that are both comprehensive and objective.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.