Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Multi-Resolution Graph Analysis of Dynamic Brain Network for Classification of Alzheimer's Disease and Mild Cognitive Impairment (2409.04072v2)

Published 6 Sep 2024 in q-bio.NC and cs.LG

Abstract: Alzheimer's disease (AD) is a neurodegenerative disorder marked by memory loss and cognitive decline, making early detection vital for timely intervention. However, early diagnosis is challenging due to the heterogeneous presentation of symptoms. Resting-state functional magnetic resonance imaging (rs-fMRI) captures spontaneous brain activity and functional connectivity, which are known to be disrupted in AD and mild cognitive impairment (MCI). Traditional methods, such as Pearson's correlation, have been used to calculate association matrices, but these approaches often overlook the dynamic and non-stationary nature of brain activity. In this study, we introduce a novel method that integrates discrete wavelet transform (DWT) and graph theory to model the dynamic behavior of brain networks. Our approach captures the time-frequency representation of brain activity, allowing for a more nuanced analysis of the underlying network dynamics. Machine learning was employed to automate the discrimination of different stages of AD based on learned patterns from brain network at different frequency bands. We applied our method to a dataset of rs-fMRI images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, demonstrating its potential as an early diagnostic tool for AD and for monitoring disease progression. Our statistical analysis identifies specific brain regions and connections that are affected in AD and MCI, at different frequency bands, offering deeper insights into the disease's impact on brain function.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube