Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Revealing Untapped DSP Optimization Potentials for FPGA-Based Systolic Matrix Engines (2409.03508v1)

Published 5 Sep 2024 in cs.AR

Abstract: Systolic architectures are widely embraced by neural network accelerators for their superior performance in highly parallelized computation. The DSP48E2s serve as dedicated arithmetic blocks in Xilinx Ultrascale series FPGAs and constitute a fundamental component in FPGA-based systolic matrix engines. Harnessing the full potential of DSP48E2s in architectural design can result in significant performance enhancements for systolic architectures on Ultrascale series FPGAs. This paper unveils several previously untapped DSP optimization techniques capable of further enhancing FPGA-based systolic matrix engines. We apply these techniques to two well-known systolic architectures: Google TPUv1 and Xilinx Vitis AI DPU. With the proposed techniques, our design achieves substantial resource and power reduction compared to the open-source TPUv1 FPGA implementation and the Vitis AI DPU implementation in the same parallelism setting. We also demonstrate the applicability of our techniques to neuromorphic hardware for supporting spiking neural network acceleration.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.