Papers
Topics
Authors
Recent
2000 character limit reached

Recognition of Schrodinger cat state based on CNN (2409.02132v1)

Published 2 Sep 2024 in quant-ph and cs.LG

Abstract: We applied convolutional neural networks to the classification of cat states and coherent states. Initially, we generated datasets of Schrodinger cat states and coherent states from nonlinear processes and preprocessed these datasets. Subsequently, we constructed both LeNet and ResNet network architectures, adjusting parameters such as convolution kernels and strides to optimal values. We then trained both LeNet and ResNet on the training sets. The loss function values indicated that ResNet performs better in classifying cat states and coherent states. Finally, we evaluated the trained models on the test sets, achieving an accuracy of 97.5% for LeNet and 100% for ResNet. We evaluated cat states and coherent states with different {\alpha}, demonstrating a certain degree of generalization capability. The results show that LeNet may mistakenly recognize coherent states as cat states without coherent features, while ResNet provides a feasible solution to the problem of mistakenly recognizing cat states and coherent states by traditional neural networks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.