Enhancing LLM-Based Text Classification in Political Science: Automatic Prompt Optimization and Dynamic Exemplar Selection for Few-Shot Learning (2409.01466v2)
Abstract: LLMs offer substantial promise for text classification in political science, yet their effectiveness often depends on high-quality prompts and exemplars. To address this, we introduce a three-stage framework that enhances LLM performance through automatic prompt optimization, dynamic exemplar selection, and a consensus mechanism. Our approach automates prompt refinement using task-specific exemplars, eliminating speculative trial-and-error adjustments and producing structured prompts aligned with human-defined criteria. In the second stage, we dynamically select the most relevant exemplars, ensuring contextually appropriate guidance for each query. Finally, our consensus mechanism mimics the role of multiple human coders for a single task, combining outputs from LLMs to achieve high reliability and consistency at a reduced cost. Evaluated across tasks including sentiment analysis, stance detection, and campaign ad tone classification, our method enhances classification accuracy without requiring task-specific model retraining or extensive manual adjustments to prompts. This framework not only boosts accuracy, interpretability and transparency but also provides a cost-effective, scalable solution tailored to political science applications. An open-source Python package (PoliPrompt) is available on GitHub.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.