Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Codebook LLMs: Evaluating LLMs as Measurement Tools for Political Science Concepts (2407.10747v2)

Published 15 Jul 2024 in cs.CL

Abstract: Codebooks -- documents that operationalize concepts and outline annotation procedures -- are used almost universally by social scientists when coding political texts. To code these texts automatically, researchers are increasing turning to generative LLMs. However, there is limited empirical evidence on whether "off-the-shelf" LLMs faithfully follow real-world codebook operationalizations and measure complex political constructs with sufficient accuracy. To address this, we gather and curate three real-world political science codebooks -- covering protest events, political violence and manifestos -- along with their unstructured texts and human labels. We also propose a five-stage framework for codebook-LLM measurement: preparing a codebook for both humans and LLMs, testing LLMs' basic capabilities on a codebook, evaluating zero-shot measurement accuracy (i.e. off-the-shelf performance), analyzing errors, and further (parameter-efficient) supervised training of LLMs. We provide an empirical demonstration of this framework using our three codebook datasets and several pretrained 7-12 billion open-weight LLMs. We find current open-weight LLMs have limitations in following codebooks zero-shot, but that supervised instruction tuning can substantially improve performance. Rather than suggesting the "best" LLM, our contribution lies in our codebook datasets, evaluation framework, and guidance for applied researchers who wish to implement their own codebook-LLM measurement projects.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.