Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flight Delay Prediction using Hybrid Machine Learning Approach: A Case Study of Major Airlines in the United States (2409.00607v1)

Published 1 Sep 2024 in cs.LG

Abstract: The aviation industry has experienced constant growth in air traffic since the deregulation of the U.S. airline industry in 1978. As a result, flight delays have become a major concern for airlines and passengers, leading to significant research on factors affecting flight delays such as departure, arrival, and total delays. Flight delays result in increased consumption of limited resources such as fuel, labor, and capital, and are expected to increase in the coming decades. To address the flight delay problem, this research proposes a hybrid approach that combines the feature of deep learning and classic machine learning techniques. In addition, several machine learning algorithms are applied on flight data to validate the results of proposed model. To measure the performance of the model, accuracy, precision, recall, and F1-score are calculated, and ROC and AUC curves are generated. The study also includes an extensive analysis of the flight data and each model to obtain insightful results for U.S. airlines.

Summary

We haven't generated a summary for this paper yet.