Papers
Topics
Authors
Recent
2000 character limit reached

Application of Neural Ordinary Differential Equations for ITER Burning Plasma Dynamics (2408.14404v2)

Published 26 Aug 2024 in physics.plasm-ph and cs.LG

Abstract: The dynamics of burning plasmas in tokamaks are crucial for advancing controlled thermonuclear fusion. This study applies the NeuralPlasmaODE, a multi-region multi-timescale transport model, to simulate the complex energy transfer processes in ITER deuterium-tritium (D-T) plasmas. Our model captures the interactions between energetic alpha particles, electrons, and ions, which are vital for understanding phenomena such as thermal runaway instability. We employ neural ordinary differential equations (Neural ODEs) for the numerical derivation of diffusivity parameters, enabling precise modeling of energy interactions between different plasma regions. By leveraging transfer learning, we utilize model parameters derived from DIII-D experimental data, enhancing the efficiency and accuracy of our simulations without training from scratch. Applying this model to ITER's inductive and non-inductive operational scenarios, our results demonstrate that radiation and transport processes effectively remove excess heat from the core plasma, preventing thermal runaway instability. This study underscores the potential of machine learning in advancing our understanding and control of burning plasma dynamics in fusion reactors.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.