Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Dynamic 1D Simulation of Divertor Plasmas with Neural PDE Surrogates (2305.18944v3)

Published 30 May 2023 in physics.plasm-ph, cs.CV, cs.LG, and physics.comp-ph

Abstract: Managing divertor plasmas is crucial for operating reactor scale tokamak devices due to heat and particle flux constraints on the divertor target. Simulation is an important tool to understand and control these plasmas, however, for real-time applications or exhaustive parameter scans only simple approximations are currently fast enough. We address this lack of fast simulators using neural PDE surrogates, data-driven neural network-based surrogate models trained using solutions generated with a classical numerical method. The surrogate approximates a time-stepping operator that evolves the full spatial solution of a reference physics-based model over time. We use DIV1D, a 1D dynamic model of the divertor plasma, as reference model to generate data. DIV1D's domain covers a 1D heat flux tube from the X-point (upstream) to the target. We simulate a realistic TCV divertor plasma with dynamics induced by upstream density ramps and provide an exploratory outlook towards fast transients. State-of-the-art neural PDE surrogates are evaluated in a common framework and extended for properties of the DIV1D data. We evaluate (1) the speed-accuracy trade-off; (2) recreating non-linear behavior; (3) data efficiency; and (4) parameter inter- and extrapolation. Once trained, neural PDE surrogates can faithfully approximate DIV1D's divertor plasma dynamics at sub real-time computation speeds: In the proposed configuration, 2ms of plasma dynamics can be computed in $\approx$0.63ms of wall-clock time, several orders of magnitude faster than DIV1D.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (83)
  1. Finalizing the ITER divertor design: The key role of SOLPS modeling. Fusion Engineering and Design, 86(12):2865–2873, December 2011. doi:10.1016/j.fusengdes.2011.06.009.
  2. Plasma edge and plasma-wall interaction modelling: Lessons learned from metallic devices. Nuclear Materials and Energy, 12:3–17, August 2017. doi:10.1016/j.nme.2017.03.033.
  3. High density operation for reactor-relevant power exhaust. Journal of Nuclear Materials, 463:22–29, August 2015. doi:10.1016/j.jnucmat.2014.12.078.
  4. Impurity seeding in ITER DT plasmas in a carbon-free environment. Journal of Nuclear Materials, 463:591–595, August 2015. doi:10.1016/j.jnucmat.2014.11.104.
  5. Physics basis for the first ITER tungsten divertor. Nuclear Materials and Energy, 20:100696, August 2019. doi:10.1016/j.nme.2019.100696.
  6. The new SOLPS-ITER code package. Journal of Nuclear Materials, 463:480–484, August 2015. doi:10.1016/j.jnucmat.2014.10.012.
  7. 2-d fluid transport simulations of gaseous/radiative divertors. Contributions to Plasma Physics, 34(2-3):362–367, 1994. doi:10.1002/ctpp.2150340241.
  8. The role of particle, energy and momentum losses in 1d simulations of divertor detachment. Plasma Physics and Controlled Fusion, 61(6):065008, 2019. doi:10.1088/1361-6587/ab1321.
  9. Benchmark of a self-consistent dynamic 1D divertor model DIV1d using the 2D SOLPS-ITER code. Plasma Physics and Controlled Fusion, 64(12):125013, November 2022. doi:10.1088/1361-6587/ac9dbd.
  10. A simple analytic model of impurity leakage from the divertor and accumulation in the main scrape-off layer. Nuclear Fusion, 60(10):106005, August 2020. doi:10.1088/1741-4326/ab9e16.
  11. Impact of the plasma operation on the technical requirements in EU-DEMO. Fusion Engineering and Design, 179:113123, June 2022. doi:10.1016/j.fusengdes.2022.113123.
  12. Message passing neural PDE solvers. In International Conference on Learning Representations, volume 10, 2022. https://openreview.net/forum?id=vSix3HPYKSU.
  13. Cao, S. Choose a transformer: Fourier or galerkin. In Advances in Neural Information Processing Systems, volume 34, pages 24924–24940, 2021. https://proceedings.neurips.cc/paper/2021/hash/d0921d442ee91b896ad95059d13df618-Abstract.html.
  14. Towards multi-spatiotemporal-scale generalized PDE modeling. arXiv preprint arXiv:2209.15616, 2022. doi:10.48550/ARXIV.2209.15616.
  15. Fourier neural operator for parametric partial differential equations. In International Conference on Learning Representations, volume 9, 2021. https://openreview.net/forum?id=c8P9NQVtmnO.
  16. Learned simulators for turbulence. In International Conference on Learning Representations, volume 10, 2022. https://openreview.net/forum?id=msRBojTz-Nh.
  17. Real-time feedback control of the impurity emission front in tokamak divertor plasmas. Nature Communications, 12(1), February 2021. doi:10.1038/s41467-021-21268-3.
  18. Radiative instability in a diverted plasma. Physics of Fluids B: Plasma Physics, 4(5):1287–1293, May 1992. doi:10.1063/1.860084.
  19. Plasma detachment in JET Mark I divertor experiments. Nuclear Fusion, 38(3):331–371, March 1998. doi:10.1088/0029-5515/38/3/303.
  20. Zohm, H. Edge localized modes (ELMs). Plasma Physics and Controlled Fusion, 38(2):105–128, February 1996. doi:10.1088/0741-3335/38/2/001.
  21. A machine learning approach based on generative topographic mapping for disruption prevention and avoidance at JET. Nuclear Fusion, 59(10):106017, August 2019. doi:10.1088/1741-4326/ab2ea9.
  22. Hybrid deep-learning architecture for general disruption prediction across multiple tokamaks. Nuclear Fusion, 61(2):026007, December 2020. doi:10.1088/1741-4326/abc664.
  23. Integrated data analysis of profile diagnostics at ASDEX upgrade. Fusion Science and Technology, 58(2):675–684, October 2010. doi:10.13182/fst10-110.
  24. Neural network approximated bayesian inference of edge electron density profiles at JET. Plasma Physics and Controlled Fusion, 62(4):045019, March 2020. doi:10.1088/1361-6587/ab7732.
  25. Neural network surrogate of QuaLiKiz using JET experimental data to populate training space. Physics of Plasmas, 28(3):032305, March 2021. doi:10.1063/5.0038290.
  26. Neural-network accelerated coupled core-pedestal simulations with self-consistent transport of impurities and compatible with ITER IMAS. Nuclear Fusion, 61(2):026006, December 2020. doi:10.1088/1741-4326/abb918.
  27. 2022 review of data-driven plasma science. arXiv preprint arXiv:2205.15832, 2022. doi:10.48550/ARXIV.2205.15832.
  28. Towards fast surrogate models for interpolation of tokamak edge plasmas. Nuclear Materials and Energy, 34:101396, March 2023. doi:10.1016/j.nme.2023.101396.
  29. Image mapping the temporal evolution of edge characteristics in tokamaks using neural networks. Machine Learning: Science and Technology, 1(1):015006, February 2020. doi:10.1088/2632-2153/ab5639.
  30. Time-dependent SOLPS-ITER simulations of the tokamak plasma boundary for model predictive control using SINDy. Nuclear Fusion, 63(4):046015, March 2023. doi:10.1088/1741-4326/acbe0e.
  31. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 113(15):3932–3937, March 2016. doi:10.1073/pnas.1517384113.
  32. Fourier neural operator for plasma modelling. arXiv preprint arXiv:2302.06542, 2023. doi:10.48550/ARXIV.2302.06542.
  33. Data-driven model for divertor plasma detachment prediction. Journal of Plasma Physics, 88(5), October 2022. doi:10.1017/s002237782200085x.
  34. Neural ordinary differential equations. In Advances in Neural Information Processing Systems, volume 31, pages 6572–6583, 2018. https://proceedings.neurips.cc/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html.
  35. VODE: A variable-coefficient ODE solver. SIAM Journal on Scientific and Statistical Computing, 10(5):1038–1051, September 1989. doi:10.1137/0910062.
  36. DVODE_F90: A variable-coefficient ODE solver, 2013. http://www.radford.edu/~thompson/vodef90web/.
  37. Shannon, C. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21, January 1949. doi:10.1109/jrproc.1949.232969.
  38. Divertor detachment in the pre-fusion power operation phase in ITER during application of resonant magnetic perturbations. Nuclear Fusion, 61(12):126027, November 2021. doi:10.1088/1741-4326/ac2ff5.
  39. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541–551, December 1989. doi:10.1162/neco.1989.1.4.541.
  40. Deep residual learning for image recognition. In Conference on Computer Vision and Pattern Recognition. IEEE, June 2016. doi:10.1109/cvpr.2016.90.
  41. Multi-scale context aggregation by dilated convolutions. In International Conference on Learning Representations, volume 4, 2016. http://arxiv.org/abs/1511.07122.
  42. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention, pages 234–241. Springer International Publishing, 2015. https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28.
  43. Denoising diffusion probabilistic models. In Advances in Neural Information Processing Systems, volume 33, pages 6840–6851, 2020. https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html.
  44. Attention is all you need. In Advances in Neural Information Processing Systems, volume 30, 2017. https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.
  45. An algorithm for the machine calculation of complex fourier series. Mathematics of Computation, 19(90):297–301, 1965. doi:10.1090/s0025-5718-1965-0178586-1.
  46. Neural message passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 1263–1272. PMLR, 06–11 Aug 2017. https://proceedings.mlr.press/v70/gilmer17a.html.
  47. Layer normalization. arXiv preprint arXiv:1607.06450, 2016. doi:10.48550/ARXIV.1607.06450.
  48. Adam: A method for stochastic optimization. In International Conference on Learning Representations, volume 3, 2015. http://arxiv.org/abs/1412.6980.
  49. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems, volume 32, 2019. https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.
  50. NVIDIA. TensorRT SDK, February 2023. https://developer.nvidia.com/tensorrt.
  51. Steady-state radiative cooling rates for low-density, high-temperature plasmas. Atomic Data and Nuclear Data Tables, 20(5):397–439, November 1977. doi:10.1016/0092-640x(77)90026-2.
  52. Model-based impurity emission front control using deuterium fueling and nitrogen seeding in TCV. Nuclear Fusion, 63(2):026006, December 2022. doi:10.1088/1741-4326/aca620.
  53. Comparison of high density and nitrogen seeded detachment using SOLPS-ITER simulations of the tokamak á configuration variable. Plasma Physics and Controlled Fusion, 62(12):125006, October 2020. doi:10.1088/1361-6587/abbcc5.
  54. Results from recent detachment experiments in alternative divertor configurations on TCV. Nuclear Fusion, 57(7):072008, March 2017. doi:10.1088/1741-4326/aa5fb7.
  55. Stangeby, P. C. Basic physical processes and reduced models for plasma detachment. Plasma Physics and Controlled Fusion, 60(4):044022, March 2018. doi:10.1088/1361-6587/aaacf6.
  56. Settles, B. Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin–Madison, 2009. http://digital.library.wisc.edu/1793/60660.
  57. The modeling of a tokamak plasma discharge, from first principles to a flight simulator. Plasma Physics and Controlled Fusion, December 2021. doi:10.1088/1361-6587/ac466b.
  58. Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first-principle-based transport model. Nuclear Fusion, 58(9):096006, July 2018. doi:10.1088/1741-4326/aac8f0.
  59. JINTRAC: A system of codes for integrated simulation of tokamak scenarios. Plasma and Fusion Research, 9(0):3403023–3403023, 2014. doi:10.1585/pfr.9.3403023.
  60. Constrained model-predictive control of the electron density profile in ITER using two pellet injectors. In 2022 IEEE Conference on Control Technology and Applications (CCTA). IEEE, August 2022. doi:10.1109/ccta49430.2022.9966088.
  61. Deep learning models for global coordinate transformations that linearise PDEs. European Journal of Applied Mathematics, 32(3):515–539, September 2020. doi:10.1017/s0956792520000327.
  62. Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications, 9(1), November 2018. doi:10.1038/s41467-018-07210-0.
  63. Kalman, R. E. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1):35–45, March 1960. doi:10.1115/1.3662552.
  64. Diagnostics for plasma control – from ITER to DEMO. Fusion Engineering and Design, 146:465–472, September 2019. doi:10.1016/j.fusengdes.2018.12.092.
  65. Attention beats concatenation for conditioning neural fields. arXiv preprint arXiv:2209.10684, 2022. doi:10.48550/ARXIV.2209.10684.
  66. Geometric clifford algebra networks. arXiv preprint arXiv:2302.06594, 2023. doi:10.48550/ARXIV.2302.06594.
  67. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, May 2021. doi:10.1038/s42254-021-00314-5.
  68. Neural conservation laws: A divergence-free perspective. In Advances in Neural Information Processing Systems, 2022. https://openreview.net/forum?id=prQkA_NjuuB.
  69. Machine learning–accelerated computational fluid dynamics. Proceedings of the National Academy of Sciences, 118(21), May 2021. doi:10.1073/pnas.2101784118.
  70. Uncertainty quantification for multiscale fusion plasma simulations with vecma toolkit. In Computational Science – ICCS 2020, pages 719–730, Cham, 2020. Springer International Publishing. doi:10.1007/978-3-030-50436-6_53.
  71. Modelling of nitrogen seeding experiments in the ASDEX upgrade tokamak. Physics of Plasmas, 25(3):032506, March 2018. doi:10.1063/1.5019913.
  72. Real-time physics-model-based simulation of the current density profile in tokamak plasmas. Nuclear Fusion, 51(8):083052, August 2011. doi:10.1088/0029-5515/51/8/083052.
  73. The JOREK non-linear extended MHD code and applications to large-scale instabilities and their control in magnetically confined fusion plasmas. Nuclear Fusion, 61(6):065001, May 2021. doi:10.1088/1741-4326/abf99f.
  74. Astra automated system for transport analysis in a tokamak. Technical report, Germany, 2002. IPP–5-98. http://inis.iaea.org/search/search.aspx?orig_q=RN:33018446.
  75. Effects of nitrogen seeding in a tokamak plasma. Physics of Plasmas, 27(12):122302, December 2020. doi:10.1063/5.0015647.
  76. Investigation of transport models in ASDEX upgrade current ramps. Nuclear Fusion, 53(5):053004, April 2013. doi:10.1088/0029-5515/53/5/053004.
  77. Recent progress in the quantitative validation of JOREK simulations of ELMs in JET. Nuclear Fusion, 57(7):076006, May 2017. doi:10.1088/1741-4326/aa6e2a.
  78. Simulation of profile evolution from ramp-up to ramp-down and optimization of tokamak plasma termination with the RAPTOR code. Plasma Physics and Controlled Fusion, 59(12):124004, October 2017. doi:10.1088/1361-6587/aa857e.
  79. SOLPS-ITER validation with TCV l-mode discharges. Physics of Plasmas, 28(8):082508, August 2021. doi:10.1063/5.0056216.
  80. Assessment of ITER divertor performance during early operation phases. Nuclear Fusion, 61(1):016021, November 2020. doi:10.1088/1741-4326/abc1ce.
  81. Searching for activation functions. In International Conference on Learning Representations, Workshop Track Proceedings, volume 6, 2018. https://openreview.net/forum?id=Hkuq2EkPf.
  82. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415, 2016. doi:10.48550/ARXIV.1606.08415.
  83. Group normalization. International Journal of Computer Vision, 128(3):742–755, July 2019. doi:10.1007/s11263-019-01198-w.
Citations (10)

Summary

We haven't generated a summary for this paper yet.