Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Transition matrices and Pieri-type rules for polysymmetric functions (2408.13404v1)

Published 23 Aug 2024 in math.CO and math.AG

Abstract: Asvin G and Andrew O'Desky recently introduced the graded algebra P$\Lambda$ of polysymmetric functions as a generalization of the algebra $\Lambda$ of symmetric functions. This article develops combinatorial formulas for some multiplication rules and transition matrix entries for P$\Lambda$ that are analogous to well-known classical formulas for $\Lambda$. In more detail, we consider pure tensor bases ${s{\otimes}_{\tau}}$, ${p{\otimes}_{\tau}}$, and ${m{\otimes}_{\tau}}$ for P$\Lambda$ that arise as tensor products of the classical Schur basis, power-sum basis, and monomial basis for $\Lambda$. We find expansions in these bases of the non-pure bases ${P_{\delta}}$, ${H_{\delta}}$, ${E+_{\delta}}$, and ${E_{\delta}}$ studied by Asvin G and O'Desky. The answers involve tableau-like structures generalizing semistandard tableaux, rim-hook tableaux, and the brick tabloids of E\u{g}ecio\u{g}lu and Remmel. These objects arise by iteration of new Pieri-type rules that give expansions of products such as $s{\otimes}{\sigma}H{\delta}$, $p{\otimes}{\sigma}E{\delta}$, etc.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.