Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Jantzen filtration of Weyl modules, product of Young symmetrizers and denominator of Young's seminormal basis (1904.13040v2)

Published 30 Apr 2019 in math.RT

Abstract: Let $G$ be a connected reductive algebraic group over an algebraically closed field of characteristic $p>0$, $\Delta(\lambda)$ denote the Weyl module of $G$ of highest weight $\lambda$ and $\iota_{\lambda,\mu}:\Delta(\lambda+\mu)\to \Delta(\lambda)\otimes\Delta(\mu)$ be the canonical $G$-morphism. We study the split condition for $\iota_{\lambda,\mu}$ over $\mathbb{Z}_{(p)}$, and apply this as an approach to compare the Jantzen filtrations of the Weyl modules $\Delta(\lambda)$ and $\Delta(\lambda+\mu)$. In the case when $G$ is of type $A$, we show that the split condition is closely related to the product of certain Young symmetrizers and, under some mild conditions, is further characterized by the denominator of a certain Young's seminormal basis vector. We obtain explicit formulas for the split condition in some cases.

Citations (2)

Summary

We haven't generated a summary for this paper yet.