Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Machine Learning Models for Lung Cancer Level Classification: A comparative ML Approach (2408.12838v2)

Published 23 Aug 2024 in cs.AI

Abstract: This paper explores ML models for classifying lung cancer levels to improve diagnostic accuracy and prognosis. Through parameter tuning and rigorous evaluation, we assess various ML algorithms. Techniques like minimum child weight and learning rate monitoring were used to reduce overfitting and optimize performance. Our findings highlight the robust performance of Deep Neural Network (DNN) models across all phases. Ensemble methods, including voting and bagging, also showed promise in enhancing predictive accuracy and robustness. However, Support Vector Machine (SVM) models with the Sigmoid kernel faced challenges, indicating a need for further refinement. Overall, our study provides insights into ML-based lung cancer classification, emphasizing the importance of parameter tuning to optimize model performance and improve diagnostic accuracy in oncological care.

Citations (2)

Summary

We haven't generated a summary for this paper yet.