Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Quasi-Localized Dual Pairs in Reproducing Kernel Hilbert Spaces (2408.11389v1)

Published 21 Aug 2024 in math.NA, cs.NA, and stat.ML

Abstract: In scattered data approximation, the span of a finite number of translates of a chosen radial basis function is used as approximation space and the basis of translates is used for representing the approximate. However, this natural choice is by no means mandatory and different choices, like, for example, the Lagrange basis, are possible and might offer additional features. In this article, we discuss different alternatives together with their canonical duals. We study a localized version of the Lagrange basis, localized orthogonal bases, such as the Newton basis, and multiresolution versions thereof, constructed by means of samplets. We argue that the choice of orthogonal bases is particularly useful as they lead to symmetric preconditioners. All bases under consideration are compared numerically to illustrate their feasibility for scattered data approximation. We provide benchmark experiments in two spatial dimensions and consider the reconstruction of an implicit surface as a relevant application from computer graphics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: