Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Radial Basis Function Approximations: Comparison and Applications (1806.07705v1)

Published 20 Jun 2018 in cs.NA and math.NA

Abstract: Approximation of scattered data is often a task in many engineering problems. The Radial Basis Function (RBF) approximation is appropriate for large scattered (unordered) datasets in d-dimensional space. This approach is useful for a higher dimension d>2, because the other methods require the conversion of a scattered dataset to an ordered dataset (i.e. a semi-regular mesh is obtained by using some tessellation techniques), which is computationally expensive. The RBF approximation is non-separable, as it is based on the distance between two points. This method leads to a solution of Linear System of Equations (LSE) Ac=h. In this paper several RBF approximation methods are briefly introduced and a comparison of those is made with respect to the stability and accuracy of computation. The proposed RBF approximation offers lower memory requirements and better quality of approximation.

Citations (124)

Summary

We haven't generated a summary for this paper yet.