Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Multimodal Latent Space with EBM Prior and MCMC Inference (2408.10467v1)

Published 20 Aug 2024 in cs.LG and cs.CV

Abstract: Multimodal generative models are crucial for various applications. We propose an approach that combines an expressive energy-based model (EBM) prior with Markov Chain Monte Carlo (MCMC) inference in the latent space for multimodal generation. The EBM prior acts as an informative guide, while MCMC inference, specifically through short-run Langevin dynamics, brings the posterior distribution closer to its true form. This method not only provides an expressive prior to better capture the complexity of multimodality but also improves the learning of shared latent variables for more coherent generation across modalities. Our proposed method is supported by empirical experiments, underscoring the effectiveness of our EBM prior with MCMC inference in enhancing cross-modal and joint generative tasks in multimodal contexts.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.