Papers
Topics
Authors
Recent
2000 character limit reached

Uniform Haar Wavelet Solutions for Fractional Regular $β$-Singular BVPs Modeling Human Head Heat Conduction under Febrifuge Effects (2408.10212v1)

Published 16 Jul 2024 in math.NA and cs.NA

Abstract: This paper introduces nonlinear fractional Lane-Emden equations of the form, $$ D{\alpha} y(x) + \frac{\lambda}{x\beta}~ D{\beta} y(x) + f(y) =0, ~ ~1 < \alpha \leq 2, ~~ 0< \beta \leq 1, ~~ 0 < x < 1,$$ subject to boundary conditions, $$ y'(0) =\mathbf{a} , ~~~ \mathbf{c}~ y'(1) + \mathbf{d}~ y(1) = \mathbf{b},$$ where, $D\alpha, D\beta$ represent Caputo fractional derivative, $\mathbf{a, b,c,d} \in \mathbb{R}$, $ \lambda = 1, 2$, and $f(y)$ is non linear function of $y.$ We have developed collocation method namely, uniform fractional Haar wavelet collocation method and used it to compute solutions. The proposed method combines the quasilinearization method with the Haar wavelet collocation method. In this approach, fractional Haar integrations is used to determine the linear system, which, upon solving, produces the required solution. Our findings suggest that as the values of $(\alpha, \beta)$ approach $(2,1),$ the solutions of the fractional and classical Lane-Emden become identical.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.