Papers
Topics
Authors
Recent
2000 character limit reached

Bridging the Language Gap: Enhancing Multilingual Prompt-Based Code Generation in LLMs via Zero-Shot Cross-Lingual Transfer

Published 19 Aug 2024 in cs.CL | (2408.09701v2)

Abstract: The use of LLMs for program code generation has gained substantial attention, but their biases and limitations with non-English prompts challenge global inclusivity. This paper investigates the complexities of multilingual prompt-based code generation. Our evaluations of LLMs, including CODELLAMA and CODEGEMMA, reveal significant disparities in code quality for non-English prompts; we also demonstrate the inadequacy of simple approaches like prompt translation, bootstrapped data augmentation, and fine-tuning. To address this, we propose a zero-shot cross-lingual approach using a neural projection technique, integrating a cross-lingual encoder like LASER to map multilingual embeddings from it into the LLM's token space. This method requires training only on English data and scales effectively to other languages. Results on a translated and quality-checked MBPP dataset show substantial improvements in code quality. This research promotes a more inclusive code generation landscape by empowering LLMs with multilingual capabilities to support the diverse linguistic spectrum in programming.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.