Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Limit Model-free Prediction in Regression (2408.09532v3)

Published 18 Aug 2024 in stat.ML, cs.LG, and stat.ME

Abstract: In this paper, we provide a novel Model-free approach based on Deep Neural Network (DNN) to accomplish point prediction and prediction interval under a general regression setting. Usually, people rely on parametric or non-parametric models to bridge dependent and independent variables (Y and X). However, this classical method relies heavily on the correct model specification. Even for the non-parametric approach, some additive form is often assumed. A newly proposed Model-free prediction principle sheds light on a prediction procedure without any model assumption. Previous work regarding this principle has shown better performance than other standard alternatives. Recently, DNN, one of the machine learning methods, has received increasing attention due to its great performance in practice. Guided by the Model-free prediction idea, we attempt to apply a fully connected forward DNN to map X and some appropriate reference random variable Z to Y. The targeted DNN is trained by minimizing a specially designed loss function so that the randomness of Y conditional on X is outsourced to Z through the trained DNN. Our method is more stable and accurate compared to other DNN-based counterparts, especially for optimal point predictions. With a specific prediction procedure, our prediction interval can capture the estimation variability so that it can render a better coverage rate for finite sample cases. The superior performance of our method is verified by simulation and empirical studies.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: