Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dynamic linear regression models for forecasting time series with semi long memory errors (2408.09096v2)

Published 17 Aug 2024 in stat.ME and stat.CO

Abstract: Dynamic linear regression models forecast the values of a time series based on a linear combination of a set of exogenous time series while incorporating a time series process for the error term. This error process is often assumed to follow a stationary autoregressive integrated moving average (ARIMA) model, or its seasonal variants, which is unable to capture a long-range dependence structure (long memory) of the error process. We propose a novel dynamic linear regression model that incorporates the long-range dependence feature of the errors and show that the proposed error process may: (i) have a significant impact on the posterior uncertainty of the estimated regression parameters and (ii) improve the model's forecasting ability. We develop a Markov chain Monte Carlo method to fit general dynamic linear regression models based on a frequency domain approach that enables fast, asymptotically exact Bayesian inference for large datasets. We demonstrate that our approximate algorithm is faster than the traditional time domain approaches, such as the Kalman filter and the multivariate Gaussian likelihood, while producing a highly accurate approximation to the posterior. The method is illustrated in simulated examples and two energy forecasting applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.