Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

The phase diagram of compressed sensing with $\ell_0$-norm regularization (2408.08319v2)

Published 31 Jul 2024 in cs.IT, cond-mat.dis-nn, and math.IT

Abstract: Noiseless compressive sensing is a two-steps setting that allows for undersampling a sparse signal and then reconstructing it without loss of information. The LASSO algorithm, based on $\lone$ regularization, provides an efficient and robust to address this problem, but it fails in the regime of very high compression rate. Here we present two algorithms based on $\lzero$-norm regularization instead that outperform the LASSO in terms of compression rate in the Gaussian design setting for measurement matrix. These algorithms are based on the Approximate Survey Propagation, an algorithmic family within the Approximate Message Passing class. In the large system limit, they can be rigorously tracked through State Evolution equations and it is possible to exactly predict the range compression rates for which perfect signal reconstruction is possible. We also provide a statistical physics analysis of the $\lzero$-norm noiseless compressive sensing model. We show the existence of both a replica symmetric state and a 1-step replica symmmetry broken (1RSB) state for sufficiently low $\lzero$-norm regularization. The recovery limits of our algorithms are linked to the behavior of the 1RSB solution.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. D. L. Donoho, IEEE Transactions on Information Theory 52, 1289 (2006).
  2. S. Ganguli and H. Sompolinsky, Physical Review Letters 104, 188701 (2010).
  3. M. Bayati and A. Montanari, IEEE Transactions on Information Theory 57, 764 (2011).
  4. Y. Xu and Y. Kabashima, Journal of Statistical Mechanics: Theory and Experiment 2013, P02041 (2013).
  5. A. Montanari, “Graphical models concepts in compressed sensing,” in Compressed Sensing: Theory and Applications (Cambridge University Press, 2012) p. 394–438.
  6. A. Bereyhi and R. R. Müller, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) , 4494 (2018).
  7. M. Mézard and A. Montanari, Information, Physics and Computation (2009).
  8. J. R. L. de Almeida and D. J. Thouless, Journal of Physics A: Mathematical and General 11, 983 (1978).
  9. F. Ricci-Tersenghi and A. Montanari, The European Physical Journal B - Condensed Matter and Complex Systems 2003 33:3 33, 339 (2003).
  10. A. Crisanti and L. Leuzzi, Physical Review B - Condensed Matter and Materials Physics 73, 014412 (2006).
  11. D. Gamarnik, Proceedings of the National Academy of Sciences 118, e2108492118 (2021).
  12. R. Monasson, Phys. Rev. Lett. 75, 2847 (1995).
  13. L. Zdeborová and F. Krzakala, Phys. Rev. E 76, 031131 (2007).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 0 likes.