Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compressed Sensing Performance Analysis via Replica Method using Bayesian framework (1409.2303v1)

Published 8 Sep 2014 in cs.IT and math.IT

Abstract: Compressive sensing (CS) is a new methodology to capture signals at lower rate than the Nyquist sampling rate when the signals are sparse or sparse in some domain. The performance of CS estimators is analyzed in this paper using tools from statistical mechanics, especially called replica method. This method has been used to analyze communication systems like Code Division Multiple Access (CDMA) and multiple input multi- ple output (MIMO) systems with large size. Replica analysis, now days rigorously proved, is an efficient tool to analyze large systems in general. Specifically, we analyze the performance of some of the estimators used in CS like LASSO (the Least Absolute Shrinkage and Selection Operator) estimator and Zero-Norm regularizing estimator as a special case of maximum a posteriori (MAP) estimator by using Bayesian framework to connect the CS estimators and replica method. We use both replica symmetric (RS) ansatz and one-step replica symmetry breaking (1RSB) ansatz, clamming the latter is efficient when the problem is not convex. This work is more analytical in its form. It is deferred for next step to focus on the numerical results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.