Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Composing Automatic Differentiation with Custom Derivatives of Higher-Order Functions (2408.07683v1)

Published 14 Aug 2024 in cs.PL

Abstract: Recent theoretical work on automatic differentiation (autodiff) has focused on characteristics such as correctness and efficiency while assuming that all derivatives are automatically generated by autodiff using program transformation, with the exception of a fixed set of derivatives for primitive operations. However, in practice this assumption is insufficient: the programmer often needs to provide custom derivatives for composite functions to achieve efficiency and numerical stability. In this work, we start from the untyped lambda calculus with a reverse-mode autodiff operator, extend it with an operator to attach manual derivatives, and demonstrate its utility via several examples.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com