Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

U-DECN: End-to-End Underwater Object Detection ConvNet with Improved DeNoising Training (2408.05780v1)

Published 11 Aug 2024 in cs.CV

Abstract: Underwater object detection has higher requirements of running speed and deployment efficiency for the detector due to its specific environmental challenges. NMS of two- or one-stage object detectors and transformer architecture of query-based end-to-end object detectors are not conducive to deployment on underwater embedded devices with limited processing power. As for the detrimental effect of underwater color cast noise, recent underwater object detectors make network architecture or training complex, which also hinders their application and deployment on underwater vehicle platforms. In this paper, we propose the Underwater DECO with improved deNoising training (U-DECN), the query-based end-to-end object detector (with ConvNet encoder-decoder architecture) for underwater color cast noise that addresses the above problems. We integrate advanced technologies from DETR variants into DECO and design optimization methods specifically for the ConvNet architecture, including Separate Contrastive DeNoising Forward and Deformable Convolution in SIM. To address the underwater color cast noise issue, we propose an underwater color denoising query to improve the generalization of the model for the biased object feature information by different color cast noise. Our U-DECN, with ResNet-50 backbone, achieves 61.4 AP (50 epochs), 63.3 AP (72 epochs), 64.0 AP (100 epochs) on DUO, and 21 FPS (5 times faster than Deformable DETR and DINO 4 FPS) on NVIDIA AGX Orin by TensorRT FP16, outperforming the other state-of-the-art query-based end-to-end object detectors. The code is available at https://github.com/LEFTeyex/U-DECN.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.