Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cross-Domain Learning for Video Anomaly Detection with Limited Supervision (2408.05191v1)

Published 9 Aug 2024 in cs.CV

Abstract: Video Anomaly Detection (VAD) automates the identification of unusual events, such as security threats in surveillance videos. In real-world applications, VAD models must effectively operate in cross-domain settings, identifying rare anomalies and scenarios not well-represented in the training data. However, existing cross-domain VAD methods focus on unsupervised learning, resulting in performance that falls short of real-world expectations. Since acquiring weak supervision, i.e., video-level labels, for the source domain is cost-effective, we conjecture that combining it with external unlabeled data has notable potential to enhance cross-domain performance. To this end, we introduce a novel weakly-supervised framework for Cross-Domain Learning (CDL) in VAD that incorporates external data during training by estimating its prediction bias and adaptively minimizing that using the predicted uncertainty. We demonstrate the effectiveness of the proposed CDL framework through comprehensive experiments conducted in various configurations on two large-scale VAD datasets: UCF-Crime and XD-Violence. Our method significantly surpasses the state-of-the-art works in cross-domain evaluations, achieving an average absolute improvement of 19.6% on UCF-Crime and 12.87% on XD-Violence.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.