Papers
Topics
Authors
Recent
2000 character limit reached

Batching BPE Tokenization Merges

Published 5 Aug 2024 in cs.CL and cs.AI | (2408.04653v1)

Abstract: The Byte Pair Encoding algorithm can be safely batched to merge hundreds of pairs of tokens at a time when building up a tokenizer's vocabulary. This technique combined with reducing the memory footprint of text used in vocabulary training make it feasible to train a high quality tokenizer on a basic laptop. This paper presents BatchBPE, an open-source pure Python implementation of these concepts, with the goal of making experimenting with new tokenization strategies more accessible especially in compute- and memory-constrained contexts. BatchBPE's usefulness and malleability are demonstrated through the training of several token vocabularies to explore the batch merging process and experiment with preprocessing a stop word list and ignoring the least common text chunks in a dataset. Resultant encoded lengths of texts are used as a basic evaluation metric.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.