Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Batching BPE Tokenization Merges (2408.04653v1)

Published 5 Aug 2024 in cs.CL and cs.AI

Abstract: The Byte Pair Encoding algorithm can be safely batched to merge hundreds of pairs of tokens at a time when building up a tokenizer's vocabulary. This technique combined with reducing the memory footprint of text used in vocabulary training make it feasible to train a high quality tokenizer on a basic laptop. This paper presents BatchBPE, an open-source pure Python implementation of these concepts, with the goal of making experimenting with new tokenization strategies more accessible especially in compute- and memory-constrained contexts. BatchBPE's usefulness and malleability are demonstrated through the training of several token vocabularies to explore the batch merging process and experiment with preprocessing a stop word list and ignoring the least common text chunks in a dataset. Resultant encoded lengths of texts are used as a basic evaluation metric.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 2 likes.