Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MM-Forecast: A Multimodal Approach to Temporal Event Forecasting with Large Language Models (2408.04388v1)

Published 8 Aug 2024 in cs.MM, cs.AI, and cs.IR

Abstract: We study an emerging and intriguing problem of multimodal temporal event forecasting with LLMs. Compared to using text or graph modalities, the investigation of utilizing images for temporal event forecasting has not been fully explored, especially in the era of LLMs. To bridge this gap, we are particularly interested in two key questions of: 1) why images will help in temporal event forecasting, and 2) how to integrate images into the LLM-based forecasting framework. To answer these research questions, we propose to identify two essential functions that images play in the scenario of temporal event forecasting, i.e., highlighting and complementary. Then, we develop a novel framework, named MM-Forecast. It employs an Image Function Identification module to recognize these functions as verbal descriptions using multimodal LLMs (MLLMs), and subsequently incorporates these function descriptions into LLM-based forecasting models. To evaluate our approach, we construct a new multimodal dataset, MidEast-TE-mm, by extending an existing event dataset MidEast-TE-mini with images. Empirical studies demonstrate that our MM-Forecast can correctly identify the image functions, and further more, incorporating these verbal function descriptions significantly improves the forecasting performance. The dataset, code, and prompts are available at https://github.com/LuminosityX/MM-Forecast.

Summary

We haven't generated a summary for this paper yet.