Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Optimal Layout-Aware CNOT Circuit Synthesis with Qubit Permutation (2408.04349v1)

Published 8 Aug 2024 in quant-ph and cs.AI

Abstract: CNOT optimization plays a significant role in noise reduction for Quantum Circuits. Several heuristic and exact approaches exist for CNOT optimization. In this paper, we investigate more complicated variations of optimal synthesis by allowing qubit permutations and handling layout restrictions. We encode such problems into Planning, SAT, and QBF. We provide optimization for both CNOT gate count and circuit depth. For experimental evaluation, we consider standard T-gate optimized benchmarks and optimize CNOT sub-circuits. We show that allowing qubit permutations can further reduce up to 56% in CNOT count and 46% in circuit depth. In the case of optimally mapped circuits under layout restrictions, we observe a reduction up to 17% CNOT count and 19% CNOT depth.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: