Papers
Topics
Authors
Recent
2000 character limit reached

Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection (2408.04254v1)

Published 8 Aug 2024 in cs.LG

Abstract: Understanding the causal interaction of time series variables can contribute to time series data analysis for many real-world applications, such as climate forecasting and extreme weather alerts. However, causal relationships are difficult to be fully observed in real-world complex settings, such as spatial-temporal data from deployed sensor networks. Therefore, to capture fine-grained causal relations among spatial-temporal variables for further a more accurate and reliable time series analysis, we first design a conceptual fine-grained causal model named TBN Granger Causality, which adds time-respecting Bayesian Networks to the previous time-lagged Neural Granger Causality to offset the instantaneous effects. Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner to help forecast time series data and detect possible anomalies during the forecast. For evaluations, besides the causality discovery benchmark Lorenz-96, we also test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: