Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Generalized Gaussian Temporal Difference Error for Uncertainty-aware Reinforcement Learning (2408.02295v3)

Published 5 Aug 2024 in cs.LG, cs.AI, math.PR, and stat.ML

Abstract: Conventional uncertainty-aware temporal difference (TD) learning often assumes a zero-mean Gaussian distribution for TD errors, leading to inaccurate error representations and compromised uncertainty estimation. We introduce a novel framework for generalized Gaussian error modeling in deep reinforcement learning to enhance the flexibility of error distribution modeling by incorporating additional higher-order moment, particularly kurtosis, thereby improving the estimation and mitigation of data-dependent aleatoric uncertainty. We examine the influence of the shape parameter of the generalized Gaussian distribution (GGD) on aleatoric uncertainty and provide a closed-form expression that demonstrates an inverse relationship between uncertainty and the shape parameter. Additionally, we propose a theoretically grounded weighting scheme to address epistemic uncertainty by fully leveraging the GGD. We refine batch inverse variance weighting with bias reduction and kurtosis considerations, enhancing robustness. Experiments with policy gradient algorithms demonstrate significant performance gains.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.