Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Safe Exploration Strategy for Model-free Task Adaptation in Safety-constrained Grid Environments (2408.00997v1)

Published 2 Aug 2024 in cs.AI

Abstract: Training a model-free reinforcement learning agent requires allowing the agent to sufficiently explore the environment to search for an optimal policy. In safety-constrained environments, utilizing unsupervised exploration or a non-optimal policy may lead the agent to undesirable states, resulting in outcomes that are potentially costly or hazardous for both the agent and the environment. In this paper, we introduce a new exploration framework for navigating the grid environments that enables model-free agents to interact with the environment while adhering to safety constraints. Our framework includes a pre-training phase, during which the agent learns to identify potentially unsafe states based on both observable features and specified safety constraints in the environment. Subsequently, a binary classification model is trained to predict those unsafe states in new environments that exhibit similar dynamics. This trained classifier empowers model-free agents to determine situations in which employing random exploration or a suboptimal policy may pose safety risks, in which case our framework prompts the agent to follow a predefined safe policy to mitigate the potential for hazardous consequences. We evaluated our framework on three randomly generated grid environments and demonstrated how model-free agents can safely adapt to new tasks and learn optimal policies for new environments. Our results indicate that by defining an appropriate safe policy and utilizing a well-trained model to detect unsafe states, our framework enables a model-free agent to adapt to new tasks and environments with significantly fewer safety violations.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets