Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MetaOpenFOAM: an LLM-based multi-agent framework for CFD (2407.21320v2)

Published 31 Jul 2024 in cs.AI and physics.flu-dyn

Abstract: Remarkable progress has been made in automated problem solving through societies of agents based on LLMs. Computational fluid dynamics (CFD), as a complex problem, presents unique challenges in automated simulations that require sophisticated solutions. MetaOpenFOAM, as a novel multi-agent collaborations framework, aims to complete CFD simulation tasks with only natural language as input. These simulation tasks include mesh pre-processing, simulation and so on. MetaOpenFOAM harnesses the power of MetaGPT's assembly line paradigm, which assigns diverse roles to various agents, efficiently breaking down complex CFD tasks into manageable subtasks. Langchain further complements MetaOpenFOAM by integrating Retrieval-Augmented Generation (RAG) technology, which enhances the framework's ability by integrating a searchable database of OpenFOAM tutorials for LLMs. Tests on a benchmark for natural language-based CFD solver, consisting of eight CFD simulation tasks, have shown that MetaOpenFOAM achieved a high pass rate per test (85%), with each test case costing only $0.22 on average. The eight CFD simulation tasks encompass a range of multidimensional flow problems, covering compressible and incompressible flows with different physical processes. This demonstrates the capability to automate CFD simulations using only natural language input, iteratively correcting errors to achieve the desired simulations. An ablation study was conducted to verify the necessity of each component in the multi-agent system and the RAG technology. A sensitivity study on the randomness of LLM showed that LLM with low randomness can obtain more stable and accurate results. Additionally, MetaOpenFOAM owns the ability to identify and modify key parameters in user requirements, and excels in correcting bugs when failure match occur,which demonstrates the generalization of MetaOpenFOAM.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: