Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FL-DECO-BC: A Privacy-Preserving, Provably Secure, and Provenance-Preserving Federated Learning Framework with Decentralized Oracles on Blockchain for VANETs (2407.21141v1)

Published 30 Jul 2024 in cs.CR

Abstract: Vehicular Ad-Hoc Networks (VANETs) hold immense potential for improving traffic safety and efficiency. However, traditional centralized approaches for machine learning in VANETs raise concerns about data privacy and security. Federated Learning (FL) offers a solution that enables collaborative model training without sharing raw data. This paper proposes FL-DECO-BC as a novel privacy-preserving, provably secure, and provenance-preserving federated learning framework specifically designed for VANETs. FL-DECO-BC leverages decentralized oracles on blockchain to securely access external data sources while ensuring data privacy through advanced techniques. The framework guarantees provable security through cryptographic primitives and formal verification methods. Furthermore, FL-DECO-BC incorporates a provenance-preserving design to track data origin and history, fostering trust and accountability. This combination of features empowers VANETs with secure and privacy-conscious machine-learning capabilities, paving the way for advanced traffic management and safety applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
Citations (1)

Summary

We haven't generated a summary for this paper yet.