Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Polynomial machine learning potential and its application to global structure search in the ternary Cu-Ag-Au alloy (2407.20630v1)

Published 30 Jul 2024 in cond-mat.mtrl-sci

Abstract: Machine learning potentials (MLPs) have become indispensable for performing accurate large-scale atomistic simulations and predicting crystal structures. This study introduces the development of a polynomial MLP specifically for the ternary Cu-Ag-Au system. The MLP is formulated as a polynomial of polynomial invariants that remain unchanged under any rotation. The polynomial MLP facilitates not only comprehensive global structure searches within the Cu-Ag-Au alloy system but also reliable predictions of a wide variety of properties across the entire composition range. The developed MLP supports highly accurate and efficient atomistic simulations, thereby significantly advancing the understanding of the Cu-Ag-Au system. Furthermore, the methodology demonstrated in this study can be easily applied to other ternary alloy systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.